All-sky images at 630 nm for the study of plasma irregularities in the upper atmosphere

Esmeralda Romero-Hernández¹, Federico Salinas Samaniego¹, Jerson Gamez Castro¹, Cristiano Wrasse²,

Eduardo Pérez-Tijerina¹, Clezio Denardini², Américo González-Esparza³, Maria Sergeeva⁴, P. F. Barbosa

Neto², Regia Laysa C.A. Resende^{2,5}, Giorgio A. S. Picanço², Ernesto Aguilar-Rodríguez³, Sony S. Chen²,

Carolina S. Carmo², Juliano Moro^{5,6}

¹Facultad de Ciencias Físico-Matemáticas, UANL, ²National Institute for Space Research, INPE, ³Instituto de

Geofísica, Unidad Michoacán, UNAM, 4CONACyT, SCIESMEX, LANCE, Instituto de Geofísica, Unidad Michoacán,

UNAM, ⁵National Space Science Center (NSSC/CAS), ⁶National Institute for Space Research/ South Regional Center

(INPE/CRS)

Abstract:

The observation of the upper atmosphere using airglow is very relevant to complement the study on the

generation of plasma irregularities that cause disruptions in radio communications. We present a report

about a new all-sky imager installed in the northern part of Mexico (24.7°N, 99.8°W), for observing

plasma irregularities, particularly Travelling Ionospheric Disturbances (TIDs). The main objective of this

instrument at hand is to characterize TIDs based on the horizontal wavelength, phase velocity, period

and propagation direction, and further, developing studies on its dynamics.

Acknowledgment: We thank the support of PRODEP (SEP), and the Center for Geospace Studies, SRI

International.

References:

Session: Ionosphere and atmosphere

Oral or Poster: Poster